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Abstract

Although classroom tests can be summarized as simple raw scores or percent-

ages, standardized tests require more sophisticated analysis to ensure that suffi-

cient quality of measurement is provided for the intended test use.  Rasch analysis, 

one of the conceptually simplest psychometric measurement models, is intro-

duced though an analogy of measuring jumping ability.  This contrasts raw score 

counts of jumping success with interval level measures of jumping ability.  Next 

the Rasch transformations of raw scores and the units of Rasch measures given in 

logits are explained.  Actual item responses may differ from that predicted by the 

Rasch model so it is possible to quantify the degree of data-model fit which leads 

into an explanation of Rasch fit statistics.  An extension of the Rasch model to 

additional facets of measurement is then explained.  Two worked examples are 

presented along with a step-by-step guide to the software and analysis.  The first 

example is for a dichotomously scored test using a simple logistic model.  The 

second example is for polytomous items with raters being an additional facet.  This 

paper is intended as an introduction to test analysis for teachers or researchers 

developing standardized tests and assumes familiarity with statistical analysis 

typical of high-school graduates.
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Introduction

The conceptual foundation of Rasch measurement differs from the raw score 

based classical test theory (CTT) that is familiar with from books such as Brown’s 

excellent Testing in Language Programs (2005).  In their popular introductory text 

on Rasch measurement, Bond and Fox (2007) use the analogy of jumping.  We can 

think of this as a trait that we could call “jumping ability”; an individual with more 

jumping ability can jump over higher obstacles than a person with less jumping 

ability.  If we wanted to measure how much jumping ability people have, we would 

determine how high an obstacle they could jump over and report it in units such as 

meters that allow us to compare the ability of people with the height of obstacles.  

This comparison is possible because the same measurement units are used for 

both the height of an obstacle and the ability of a person.  If an individual’s ability 

exceeded the height of an obstacle, they would be expected to jump over that 

obstacle more than they would fail.  The difference in ability between 1.0 m and 2.0 

m is the same as the difference between 2.0 m and 3.0 m because the meter is an 

equal interval measure.  Additionally, ability of 2.0 m is twice as much as 1.0 m 

because the meter scale has a meaningful zero point.  This means that meters 

provide ratio level measurement, so we can express differences in jumping ability 

or height as ratios, such as 1/2 or 22/7.

Observing and measuring psychological and cognitive abilities is more difficult 

though because we don’t have physical objects to scale them against.  For example, 

if we administer a language test with 100 questions, we don’t know how much 

more ability a score of 90 shows than a score of 80 unless we have calibrated the 

test items and scores on an interval scale of difficulty.  The number of times a 

person jumps is not much use unless we know the height of the obstacles they 

jump over, and the number of questions answered correctly is not much use unless 

we have some measure of how difficult the questions are.  This is the type of situ-

ation the Rasch measurement model was developed for as it lets us convert test 

scores into interval measures of difficulty or ability using software such as 

Winsteps (Linacre, 2010b) or Facets for many-faceted measurement (Linacre, 

2010a).
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McNamara (1996) provides an accessible introduction to Rasch analysis explain-

ing the stochastic, or probabilistic, nature of the Rasch model.  Crucially, this 

means that estimating the ability of persons and difficulty of items depends on 

success or failure not being deterministic.  Thus, we might expect the type of 

results shown by Jumper 1 and Jumper 2 in Table 1, constructed to illustrate how 

people might perform if they were allowed 15 attempts at jumping objects of 

various heights.  We can see that Jumper 1 always successfully jumps 1.0 m, never 

successfully jumps 1.8 m, and shows high probability of success up to 1.5 m.  We 

might decide that it’s reasonable to estimate this person’s ability as 1.5m, because 

they will probably succeed more than they fail up to this level.  However, success 

or failure is stochastic, with a gradual decrease in the probability of success rather 

than an abrupt change from 100% success to 100% failure.  Similarly, Jumper 2 

shows high probability of success up to 2.0m, but low probability after that, so we 

might estimate ability as 2.0m and claim that Jumper 2 is 0.5m better at jumping 

than Jumper 1.  Of course we need to remember that these are estimates and the 

real difference will probably be somewhat larger or smaller than our estimate.

If we consider Jumper 3 though, we can see a deterministic pattern of 100% 

success up to 1.5m and 0% success after that point.  Although this intuitively 

seems to give a more precise measure, what we actually know about Jumper 3 is 

that she better than 1.5m but not as good as 1.6m.  Her ability must be somewhere 

between these points, but we have no way of estimating it precisely.  This data 

over-fits our model of the trait of jumping, and the over-predictability of the results 

reduces the precision of the measurement that is possible.  Under stochastic 

models such as the Rasch model, we can’t convert purely deterministic data into 

interval measures.  This seems extremely counterintuitive, but the probabilistic 

Rasch data of Jumper 1 and Jumper 2 can give us a more precise estimate of ability 

than the deterministic, or Guttman, data of Jumper 3.  Jumper 4 and Jumper 5 

Table 1 Probabilistic versus Deterministic Data



（22） Trevor A. Holster & J. Lake

　145

illustrate this more dramatically because we cannot estimate their ability at all.  

We know that Jumper 5 is better than 2.2m and that Jumper 4 is not as good as 

0.8m, but we have no way of precisely estimating their ability because the range of 

our test items is smaller than the range of person abilities.  

Jumper 6 illustrates the opposite problem to that of Jumper 3, that of misfit.  

This person failed on the easy jumps but succeeded on more difficult ones, requir-

ing investigation because this does not conform to the model we have of jumping 

ability, where low obstacles should be easier to jump over than high obstacles.  

Perhaps this person misunderstood the task at first but then improved after prac-

tice, perhaps the data was recorded incorrectly, or perhaps they cheated when they 

realized that they could not succeed.  Another possibility is that Jumper 6 slept late 

and missed the first part of the test, only made three attempts at 1.1m, 1.2m, and 

1.3m, and then mostly succeeded until 1.7m.  If this was so, we would estimate 

this person to be a better jumper than Jumper 1, even though they have a lower 

score.  In cases like this, where different persons attempt different subsets of test 

items, the raw score of the number of successful jumps does not allow us to esti-

mate ability unless we know how difficult the jumps were.

Thus, to summarize, Rasch measures are interval estimates of ability of a trait 

that require success on that trait to be probabilistic, and equal intervals between 

estimates mean equal intervals in ability.  Guttman data may be overly determin-

istic and can allow less probabilistic ordering of ability, but does not allow for proba-

bilistic measures of ability to the same degree as Rasch models.  Classical test 

theory relies on scores of how many times a candidate succeeded, but these scores 

may not give useful measures of the underlying trait that we wish to measure.  

Thus Guttman and CTT scores may only provide ordinal ranking of ability, 

whereas Rasch estimates generate interval measures of ability.

This transformation of raw scores to interval level measures is achieved 

through calculation of odds-ratios.  For example, a person scoring 80% on a test 

has an odds-ratio of 4/1, calculated by dividing 80% success by 20% failure, while 

a person scoring 20% has an odds-ratio of 1/4 and a person scoring 50% has an 

odds-ratio of 1/1.  However, odds-ratios are difficult to manipulate, so these are 

converted to log odds-ratios, more commonly called “logits”, which can be added 
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or subtracted easily.  The relationship between logit scores and probabilities of 

success are expressed mathematically as 

P = exp(B−D)/(1+exp(B−D))                       (1)

where P equals the probability of success, and B, and D respectively equal the logit 

measures of  person ability and item difficulty.  When person ability and item dif-

ficulty are exactly equal, i.e.  the difference between item difficulty and person 

ability is 0.00 logits, then the probability of success equals 50%, while a person 

with ability 1.00 logits greater than item difficulty has a probability of success of 

73% and a person with ability of -1.00 logits has a probability of success of 27%.  

Logit scores thus tell us about the relative difference between person ability and 

item difficulty, not absolute ability.  Logits thus represent interval level measures, 

in a similar manner to the Celsius scale where zero degrees just represents a con-

venient benchmark, not ratio measures like the meter scale.  An important impli-

cation of this is that logit scores cannot be calculated when a person fails on all 

items or succeeds on all items, just as we do not know the jumping ability of a 

person who succeeds on all jumps or fails on all jumps.

A critical question then is whether the trait or ability we wish to investigate fits 

the requirements of the model, i.e., is there a stochastic pattern of success 

increasing with ability? If this is so, then Rasch measures are appropriate.  If 

success is purely random, we could not claim to be measuring anything at all.  If 

success shows strongly deterministic Guttman patterns, then the trait does not 

meet the requirements of the Rasch model and we would not be able to generate 

useful measures.  Engelhard (2008) proposes that the Rasch measurement is fun-

damental to the trait of language performance, which is probabilistic, in contrast to 

a deterministic model of language competence.  McNamara (1996) explains 

Chomsky’s distinction between language competence and performance and the 

crucial developments in describing language performance arising from the work of 

Hymes (1972), Canale and Swain (1980), and Bachman and Palmer (1996).  Taken 

together with the fundamental role of interlanguage variation in the process of 

language acquisition outlined by Ellis (1994), we have a model of language profi-

ciency that is fundamentally probabilistic, not a deterministic Guttman model.  

Thus rather than needing to justify the use of Rasch measurement for language 
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testing and research, the opposite is the case; the use of non-probabilistic mea-

surement implies investigation of a non-probabilistic trait, but language profi-

ciency is not such a trait.

Rasch Fit Statistics
Despite its conceptual simplicity, the Rasch model provides sophisticated tools 

to analyze individuals’ responses to items, individual items’ contribution of infor-

mation to the whole test, and how the information is organized throughout the 

test.  Rather than relying on a single raw-score summary for each person, the 

information contributed by each person’s response to each item can be considered, 

providing quality control statistics for persons, items, and the test as a whole 

(Bond & Fox, 2007; Embretson & Hershberger, 1999; Embretson & Reise, 2000; 

Engelhard, 2013).

The basis of many of these diagnostic tools is the “score residual”, which is the 

difference between a person’s expected score (i.e.  probability of a correct 

response) on an item and their observed score.  In a dichotomous test the 

observed score can only be 0 or 1, but the expected score can have any value 

between 0 and 1.  When person ability equals item difficulty, the probability of 

success is 50%, so the expected score is 0.50, giving possible score residuals of 

+/-0.50.  As person ability increases relative to item difficulty, the expected score 

approaches 1.0, so the magnitude of the score residual becomes smaller for a 

correct response and larger for an incorrect response, while the opposite occurs as 

person ability decreases relative to item difficulty.  Smaller score residuals thus 

indicate better fit of the data to the Rasch model, while larger score residuals indi-

cate data-model misfit.  Score residuals across a dataset are expected to follow a 

chi-square distribution, and can be calculated for both persons and test items, 

allowing detailed diagnosis of misfitting persons and items.  

Unlike exploratory modeling, which aims to find the model that best fits the 

observed data, the Rasch model is a confirmatory model which represents a theo-

retical idealization of measurement, analogous to the meter representing a theo-

retically perfect definition of length.  Physical rulers provide objective measures 

only to the degree that they can be calibrated against a common scale and, while 



（25）How High Can They Jump: An Introduction to Rasch Measurement

　142

they are never perfect, the practical consideration is whether the calibration is suf-

ficiently good for the task at hand.  Similarly, Rasch logit measures represent an 

idealized model of measurement, and fit statistics provide quality control showing 

how large the distortions in the actual instrument are compared to this.  

Although software such as Winsteps produces a range of different statistics on 

the performance of persons and items, the mean-square (MnSq) fit statistic is key 

to Rasch quality control.  The mean-square statistic has a minimum value of 0.00, 

no upper limit, and an expected mean value of 1.00 that represents perfect fit 

between the data and the model.  Values less than 1.00 indicate over-predictability, 

or overfit, while values greater than 1.00 indicate unpredictability, or misfit.  The 

range of acceptable fit varies with context and type of measurement instrument, 

but typically values less than 1.25 are considered well-fitting, values greater than 

1.50 require investigation, and values greater than 2.00 indicate a lack of effective 

measurement.  It’s also important to remember that overfit is also of concern as it 

indicates data with less stochastic variation than expected, which reduces the 

amount of information available to estimate logit measures, resulting in muted 

measurement.  To further confuse matters, fit statistics are reported as both infit 

and outfit values.  Infit values are information weighted, emphasizing responses 

where person ability is well matched to item difficulty, and thus are a more impor-

tant indicator of distorted measurement, while outfit values are unweighted and 

thus provide diagnostic information about unexpected outlying responses.

Many-faceted Rasch Measurement
Rasch’s original model was developed for analysis of dichotomous data, but sub-

sequent extensions allowed analysis of Likert type rating scales, where responses 

can be assigned a range of intermediate values falling between total rejection and 

total endorsement, and of many-faceted data, where factors such as the severity or 

lenience of judges must be considered in addition to the facets of person ability and 

item severity (Linacre, 1994).  For judge mediated performance assessments, 

rater severity must be added to Equation 1, resulting in

P = exp(B−R−D)/(1+exp(B−R−D))               (2)

where R equals rater severity.  Although the Rasch model initially generated criticism 
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as an over-simplification of complex traits, many-faceted Rasch measurement 

(MFRM) is now a standard procedure in analyzing judge mediated performance 

assessments (McNamara, 1996; McNamara & Knoch, 2012).  As well as providing 

logit measures that are adjusted for the severity of different raters,  MFRM pro-

vides several important advantages over simple raw-score analysis: person ability 

can be easily criterion referenced because the difficulty of rubric items is reported 

in the same units as person ability, rater and rubric item performance can be moni-

tored through data-model fit, and diagnosis of individual students in need of reme-

diation is possible through person fit statistics and analysis of unexpected 

responses.

Worked Example 1: Analyzing a Multiple-choice Test using Winsteps

The sample data files needed to replicate this example, a step-by-step guide to 

importing data into Winsteps, and authorized versions of the free Ministeps and 

Minifacs software are available for download from:

http://db.tt/CDDvTjWH

The Ministeps installation file is in the “Software” directory.  This is identical to 

the full Winsteps software package but is limited to 25 items and 75 persons.  The 

example data file contains 25 items and 75 persons, so Ministeps can be substituted 

for Winsteps to run the example analysis.  The data files for this example are in the 

“Winsteps Example Files” directory and instructions on importing data into 

Winsteps and setting up a control file are given in Supplement A.

To start the analysis, drag the file “07 Vocab Test Control” onto the Winsteps 

icon on your desktop and Winsteps will launch.  Press “Enter” to choose a tempo-

rary file name, then “Enter” again because we don’t need extra specifications.  

Winsteps presents an initial report with some useful data in the table at the bottom.  

These summary statistics are also available by clicking on the “Output Tables” 

menu,  then “3.1 Summary Statistics.” Winsteps Table 3.1 is reproduced in Table 2.  

We can see that there were 75 persons on the test and 25 items.  However, 3 

persons had extreme scores, either 0% or 100%, so the non-extreme person 

results are most useful here.  The mean person measure (i.e.  the person ability) 
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is 56.81 with a mean error of 6.19.  The mean item ability is 50.00, an arbitrary 

value specified when setting up the control file, with an error of 3.24.  We can see 

that the average person measure is better than the average item difficulty, so when 

a person of mean ability tries a question of mean difficulty, they have a higher prob-

ability of success than failure.

If we go to the “Edit” menu and click “Edit control file=…” the control file “07 

Vocab Test Control” opens.  This is a text file.  At the bottom is the data from the 

test.  Above that are the item labels, in this case the correct answer for each ques-

tion.  At the top are the instructions for Winsteps about how to read the data.  The 

specification “UIMEAN=50” tells Winsteps to assume that the average question 

has a difficulty of 50.  We can set this to any number that is convenient.  

Researchers usually set it to 0, but for classroom tests, figures in the range of 50 

to 100 are easier to understand.  We can also see that “USCALE=10”.  This means 

that 1 logit is scaled to 10 for this test.   That means that the difference between 

mean person ability and mean item ability is 0.681 logits ((56.81 - 50.00) / 10.00), 

which is a substantive difference.

There is another way to change the specifications.  Close the control file and 

click “Data Setup”.  Usually it’s easier to create the original control file here and 

then edit it in Notepad later.  At the top right we can see the test has been set with 

“Set item mean” at a value of 50 and “Units per logit” to 10.  Close the data setup 

window and return to Winsteps.

We also have some other information in the summary report shown in Table 2.  

There are reports on “fit”, how well the data fitted the model, estimates of person 

reliability (how reliably the items estimated the ability of the persons) and item 

reliability (how well the persons allow estimates of the item difficulty).  The 

person reliability of 0.87 is good for such a short test, and we see person separation 

estimated at 2.53.  This means that we can be reasonably confident that this test 

can separate the persons into 2 groups, but less so that it can separate them into 3 

groups.  If we used this test as a placement test, we could be confident that the 

highest students are better than the lowest students, but not that the average stu-

dents are better or worse than the low or high students.

We should be concerned about the fit statistics though.  For persons, the 
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average of the mean-square infit is 0.94, which is below the expected value of 1.00, 

but the outfit value is 1.15.  The standard deviations are respectively 0.26 and 1.46.  

From this we can see that some persons did not behave very predictably.  We can 

see a similar pattern in the item fit statistics, with infit mean-square average of 

1.00 but outfit of 1.17 and standard deviations of 0.27 and 1.46 respectively.  The 

Table 2 Winsteps Table 3.1 Summary Statistics
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standard deviations of the outfit statistics are extremely high, so either some low 

ability persons succeeded on some difficult items or some high ability persons 

failed on some easy items.

Distribution of Item Difficulty
Very important information is displayed in the Rasch item map, often called a 

“Wright Map” after Ben Wright.  On the Output Tables menu click “1 Variable 

Maps”, reproduced in Table 3.  This shows graphically how the candidates compare 

to the items; it’s a picture of how high they can jump, mapping persons on the left 

against items on the right.  The easiest items and least proficient persons are at the 

bottom, and the most difficult items and most proficient persons at the top.  

Looking at the Wright map in more detail, we can see that Item 11 “dozen”  is 

the most difficult and Item 22 “difficult” the easiest.  We can see that Item 17 has 

a difficulty of about 65, or 1.5 logits, Item 8 has difficulty of 50, or 0 logits, and Item 

9 has difficulty of  about 35, or -1.5 logits.  The interval in difficulty between items 

17 and 8 and between items 8 and 9 are about the same.  We can also see that there 

are not enough difficult items.  There are many persons of much higher ability than 

the most difficult item, so we don’t really know how much ability these persons 

have.  We also have some big gaps between the easier items, so we can see that 

this test needs to be modified.  We need less items of average difficulty, some 

much more difficult items, and we need to fill in the gaps between the items.  It’s 

very likely that the mismatch between the ability of the persons and the difficulty 

of the items is responsible for much of the misfit we saw in Table 2 (Winsteps Table 

3.1).  

Point-Measure Correlation
We’ve seen that this test is mismatched to the sample of persons but we need 

more information about the quality of the information we have.  Winsteps has a lot 

of very sophisticated analyses that are well beyond what we can discuss here, so 

we’ll just cover a few fundamental things.  First we need to check to see if we have 

any really bad items.  On the Diagnosis menu, click “A Item Polarity”.  This brings 

up Winsteps Table 26.1, reproduced in Table 4, which arranges the items in order of 
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Table 3 Winsteps Table 1.0 Person-Item Map
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point-measure correlation.  This is the correlation of each item to the overall 

measure of the test.  A value of 0 means the relationship between the item and the 

overall test is random; some high ability persons got it correct, some low ability 

persons got it correct, and it doesn’t tell us who is high or low ability.  Negative 

values mean that low ability people got it correct more than high ability people, 

which is a big problem.  It may be a badly written item or it might test a different 

trait than the overall test, maybe an item needing cultural knowledge in a grammar 

test, for example.  The Pt-Measure figures for this test are generally very good, all 

the values are positive and above 0.4 except for “dozen”, which is 0.21.  This is 

fairly encouraging, but we might want to look more closely at Item 11 to see why 

it has such a low correlation.  What is obvious about this item is that it is the most 

difficult item in the test, it has a “measure” or difficulty of 85.  It also has terrible 

fit statistics, with infit mean-square of 1.86 and outfit of 7.94.  It has a raw score of 

10, so only 10 candidates got it right.  If one or two low candidates got lucky on this 

item, it would make a big difference to the correlation and to the fit statistics, so we 

need to be careful about interpreting point-measure correlations for very difficult 

Table 4 Winsteps Table 26.1 Item Point-measure Correlation
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or easy items.  

Below Winsteps Table 26.1 we find Winsteps Table 26.3 which shows how the 

distractors for each item functioned, a sample of which is reproduced in Table 5.  

Winsteps provides this information for all items but, for the sake of contrast, Table 

5 only shows the results for Item 11 (the worst performing item) and Item 5 (the 

best performing item).  In the “Data Code” column, we can see that each item had 

five response options, “A” to “E”.  The correct answer, or “key”, for Item 11 was 

“A” and the key for Item 5 was “D”, so these two responses have score values of 1 

while the other response options, or “distractors”, have score values of 0.  The 

data count columns show how many responses were recorded for each response 

option as both a raw count and a percentage.  The expected pattern in a multiple-

choice test is that the distractors attract different numbers of responses depending 

on how convincing they are to persons at different levels of ability.  Item 5 shows 

56% of persons choosing the correct answer, and smaller numbers choosing each 

distractor.  Importantly, the average ability of the persons choosing the key was 

72.28, a much higher figure than for any of the distractors.  This tells us that higher 

ability persons were not fooled by the distractors very often, indicating that this 

item is functioning effectively.  Item 11 shows nearly equal numbers of persons 

choosing each response option though, with a much smaller difference between 

Table 5 Winsteps Table 26.3 Item Distractor Frequencies
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the persons choosing the key and those choosing the distractors.  This pattern 

shows an item that is not working effectively so we need to investigate to see if 

there was a problem with data entry, printing of the answers sheets, etc.

Item Fit
Another important diagnosis available is the item pathway bubble charts, intro-

duced by Bond and Fox (2007).  On the Plots menu, click “Bubble Chart 

(Pathway)”.  Let’s look at the infit mean-square chart for the items as an example.  

Check the “Items” box, the “Infit” button, and the “Mean-square (chi-square/d.f.)” 

button, then “OK”.  A dialogue box will pop up asking what labels you want to use.  

In this case, let’s choose “Label”, the name we gave the item will be displayed.  

Winsteps will now create an Excel bubble chart of the item infit, reproduced in 

Figure 1.  The vertical axis shows item difficulty, so “dozen” is the most difficult 

item, and “difficult” is the easiest.  The size of the bubbles shows the standard 

error of each item.  If we hover our mouse pointer over “dozen”, we can see that 

the bubble has a size of 4.06, the item difficulty is 85.84, and the fit is 1.86.  The 

confidence interval of the item difficulty is plus or minus 2 standard errors, so we 

can be 95% confident that the item difficulty is between 77.72 and 93.96.  However 

the scale on the left is unreadable, so we need to right click on it and select “format 

axis”, then change the major unit interval to 10.  The size of the bubbles is too big, 

we want “dozen” to be about 8 units in diameter, but it’s about 20 units.  Right click 

inside the bubble, then click “Format Data Series” and change the bubble size to 

40%.  This gives a better indication of the standard error in relation to the diffi-

culty.  Although “roar” is probably more difficult than “debt”, the bubbles overlap 

slightly, so we can’t be 95% confident that it actually is more difficult.  We can be 

quite confident that “roar” is more difficult than “justice”, though.

Fit is a much too complex and confusing topic to discuss in-depth here, but a 

rule-of-thumb for mean-square values is that between 0.8 and 1.3 is good.  Values 

over 2.0 will degrade measurement, so it may be necessary to remove items or 

persons for test analysis (persons can later be returned before calculating final 

grades).  Mean-square values always average about 1, so if we have items with a 

high value, they will cause other items to have a low value.  High values mean 
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there is too much unpredictability in the data, maybe it was a bad question and low 

students were able to guess it or high students were confused, or maybe students 

cheated.  If the misfit is too bad, we might remove the item from the test, then 

redo the analysis and see how the remaining items function.  “Dozen” has a very 

high misfit value.  Look back at the raw data in the Excel file “00 Vocab Test 

Responses” and see if you can find why.  (Hint: the responses to this item have 

been deliberately changed to cause it to misfit, the pattern should be easy to see.)

The help menu in Winsteps gives a lot of advice about diagnosing misfit.  A 

summary of that advice is: (1) First investigate negative point-measure correla-

tions.  Fix data entry problems, miskeys, etc.  (2) Investigate outfit before infit.(3) 

Investigate mean-square before t standardized.  (4) Investigate high values (too 

unpredictable) before low values (too predictable).  In-depth information about fit 

is available in Winsteps Table 26.1 (and in other tables accessible from the Output 

Tables menu).  Four different values are given, two for “Infit” and two for “Outfit”.  

Infit tells us how predictable the responses are on items close to the person’s 

Figure 1 �Winsteps pathway bubble chart output of item infit. The vertical axis shows 
item difficulty, the horizontal axis shows item infit mean-square values, and 
the size of the bubbles shows the 95% confidence interval of item difficulty.
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ability, so too much unpredictability is a serious problem.  The MNSQ, mean-

square, figures show the size of the misfit and are expected to be around 1.0.  

Values greater than about 1.3 mean the responses are becoming too unpredictable, 

the data is misfitting the model, and values less than about 0.7 mean the responses 

are becoming too predictable and the data overfits the model.  Unpredictability is 

much more serious than being too predictable, so we try to remedy problems with 

misfit first.  The ZSTD values indicate the statistical significance of the fit.  Plus or 

minus 2 means that the misfit is becoming statistically significant.  Small misfit 

MNSQ values that are statistically significant are not usually a problem, but large 

values will need investigation.

Outfit values show how responses to items much easier or more difficult than 

the person’s ability fit the model, so they are easier to diagnose.  On the “Output 

Tables” menu, click “10 Item Column Fit Order”.  Scroll down to Winsteps Table 

10.5, reproduced in Table 6.  This shows the most unexpected responses, i.e.  

Table 6 Winsteps Table 10.5 Most Unexpected Responses
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when low ability persons succeeded on difficult items or high ability persons failed 

on easy items.  The vertical axis shows items, with the easiest items higher on the 

axis, while the horizontal axis shows persons, with the highest ability persons on 

the left and the lowest ability persons on the right.  Person #43 was thus the 

highest ability and Person #63 was the lowest.  The top left corner therefore 

matches high ability persons with easy items, so we expect scores of 1 in this area.  

The bottom right corner matches low ability persons with difficult items, so we 

expect scores of 0 in this area.  Responses where the observed result matched the 

expected result are marked by a “.”, while unexpected failure is marked by a “0” 

and unexpected success is marked by “1”.  

We can use this table to go back to the answer sheets and check for problems, 

maybe the scanner misread an answer, maybe the candidate guessed a difficult 

item.  Often we will recode the responses to “missing data”.  Doing this with 

responses that show poor outfit will improve estimates of person ability and the 

quality of the measures overall, but infit is much more difficult to remedy.  Look at 

the outfit for “Dozen”, it is enormous, low students are getting it correct as often 

as high students.  This item needs to be removed from the test.  Look at the 

responses for persons #2, #58, and #75 in the Excel file “00 Vocab Test 

Responses”.  #58 has answered  A, B, C, D, in a fixed pattern.  This person has 

very bad outfit.  #2 and #75 got confused and marked the answer for questions 1 

to 11 in the wrong boxes, but then started answering correctly, yet their fit statis-

tics don’t ring any alarm bells.  Perhaps so many other students answered ran-

domly that these two don’t stand out as unusually unpredictable.

Comparing Groups of Students
Often we want to know if different groups of students are significantly different 

in their ability.  A common tool for this is the t-test.  Winsteps can conduct simple 

t-tests if we label each student with a group code.  The person codes in this analy-

sis are eight characters long.  The first four characters are a student number, fol-

lowed by a space and then a gender code, then another space and a group code.  

The students have been placed into class groups using a placement test and the 

group codes for the three levels are “L”, “H”, and “K”.  In Winsteps, click on the 
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“Output Tables” menu, then “28.  Person Subtotals”.  You will be prompted for the 

information about where the group code is located in the person label by a text box 

that says “PSUBTOTAL = $S1W1”.  The first part of this, “$S1”, means character 

1 in the label and the second part, “W1”, means one character wide.  Our group 

labels are one character wide and start at the eighth character in the person label 

so we need to change that to read “$S8W1” and then click “OK”.  This will open a 

text file with the results of the t-test, reproduced in Table 7.  

The first section of Table 7 shows a summary of the groups and the combined 

scores, with a mean ability of 59.82 for the “H” group, 83.62 for the “K” group, and 

37.29 for the “L” group.  The next table shows the difference between each pair of 

groups and whether the difference is statistically significant.  The “H” group was 

23.80 lower than the “K” group, with a t = -6.79 and p = .000.  This means that it 

is very, very unlikely that the mean score of these two groups were different by 

Table 7 Winsteps Table 28.1 t-test of Person Groups
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chance, so the difference is statistically significant.  Although t-tests are one of the 

most common statistical analyses, they need to be interpreted very carefully when 

comparing multiple groups so you are recommended to refer to references such as 

Field (2009) for a detailed explanation of how to interpret these results.

Worked Example 2: Analyzing Data with Facets

The sample data files needed to replicate this example, a step-by-step guide to 

constructing a Facets specification file, and authorized versions of the free 

Ministeps and Minifacs software are available for download from:

http://db.tt/CDDvTjWH

The Minifacs installation file is in the “Software” directory.  This is identical to 

the full Facets software package except that it is limited to 2000 responses.  The 

example data file contains 1944 responses, so Minifacs can be substituted for 

Facets to run the example analysis.  The data files for this example are in the 

“Facets Example Files” directory.

Once you have installed Facets, drag the file “01 Presentation Specification with 

Data” onto the Facets icon on your desktop and Facets will open the file and ask you 

for extra specifications.  Click “OK” and you will be asked to choose where to save 

the output file.  Save it in the same directory as the specification file.  Now Facets 

will analyze the data and produce an output file in plain text format.  You can see 

that this file is called “01 Presentation Specification with Data.out”, which is the 

same name as the specification file, but with “.out” appended.  This makes it easy 

to match the output files to the specification files later on.

This dataset is from practice presentations that were used to introduce students 

to a rating rubric.  There are 19 students, S1 to S19.  There were also 19 student 

raters, R1 to R19, plus three sets of ratings from the classroom teacher, Ta, Tb, and 

Tc.  Rater Ta represents ratings done live in class while Rater Tb and Tc represent 

ratings of video recordings of the presentations.  The rating rubric had nine items, 

which means that three different things interacted to produce a rating: a rater 

judged a person against an item to produce a rating from 0 to 3.  Therefore we need 

a 3-faceted analysis.  Although the teacher rated all the students, students did not 
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rate their own performance and some students did not provide ratings for all the 

other students, so we cannot just add up raw scores because no student had the 

same set of raters and different raters may have used the rubric differently.  

Therefore we need to investigate rater performance and adjust for rater leniency.

Facets produces a single plain text output file that contains all the results of the 

analysis.  It’s very convenient to have all the results presented like this, but it’s 

also a bit overwhelming at first.  A good place to start is Facets Table 6, the variable 

map, reproduced in Table 8.  This looks very similar to the Wright maps produced 

by Winsteps, except that it contains a column for raters in addition to students and 

items.  Looking at the items column, we can see that “Eyes” (i.e.  eye contact) was 

the most difficult item and “Intonation” was the easiest.  Overall, the students 

were rated very highly, only eye contact was difficult for most of them.  However, 

the range of rater severity was huge, more than three logits.  We definitely cannot 

use raw scores to measure student ability.

Facets Table 7.2.1, reproduced in Table 9, shows the rater measurement report 

arranged in order of rater severity.  Rater R8 was the most severe rater.  This 

rater’s average rating was 1.67 compared with an average of 2.13 for all raters.  

This corresponds to a logit measure of 1.18 logits compared with 0.00 logits for all 

raters.  The most lenient rater was R2, with an average rating of 2.71 and a logit 

measure of −2.07.  These are enormous differences that make it clear that the raw 

ratings from different raters are not interchangeable.  Another interesting point is 

that the teacher’s ratings, Ta, Tb, and Tc, changed in severity between the differ-

ent sessions, showing that we cannot assume that rater’s performances are stable 

between different rating sessions.

Facets Table 7.2.2, reproduced in Table 10, also details the performance of raters 

but is arranged in order of misfit.  Two raters, R14 and R16, show misfit large 

enough to be of concern, with mean-square values exceeding 1.50.  Also, there are 

several raters who over-fit the model, with values much less than the expected 

1.00.  A likely cause of this is holistic rating, where raters can identify overall good 

or weak performances, but assign similar ratings on all rubric items instead of 

considering each item independently.  The resulting lack of variance in the data 

means that there is less information available about the performances, so highly 
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over-fitting raters are undesirable.  Overall, Facets Table 7.2.1 and Facets Table 

7.2.2 have shown us that rater performance is of concern here; many of these stu-

dents do not seem to be using the rubric in the same way as the teacher.

However, we need to know that the teacher was consistent in his use of the rubric 

before we can diagnose problems with student raters.  The specification file “03 

Table 8 Facets Table 6.0 All Facet Vertical Rulers



（41）How High Can They Jump: An Introduction to Rasch Measurement

　126

Table 9 Facets Table 7.2.1 Raters Measurement Report Arranged by Severity

Table 10 Facets Table 7.2.2 Raters Measurement Report Arranged by Fit
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Presentation Teacher Ratings Specification.txt” includes only the teacher’s ratings.  

When we open this in Facets, Facets Table 7.2.2, reproduced in Table 11, shows a 

pattern of Rater Ta (live ratings) being lenient and slightly over-fitting, Rater Tb (the 

first video rating) being strict and well fitting, and Rater Tc (the second video rating) 

being of average severity and slightly misfitting.  Rater behavior has changed 

between sessions so raw ratings would not be suitable for high-stakes purposes, but 

the level of misfit is quite small so logit measures provide effective measurement 

and can be used to diagnose students’ use of the rubric.

Table 11 Facets Table 7.2.2 Rater Measurement Report for Teacher Ratings

Table 12 Facets Table 7.1.2 Student Measurement Report Anchored Against Teacher Ratings



（43）How High Can They Jump: An Introduction to Rasch Measurement

　124

The specification file “04 Presentation Anchored Specification.txt” includes 

both the student raters and the teacher but the rubric has been “anchored” against 

the teacher ratings by specifying the difficulty of each rubric item when rated only 

by the teacher.  The ratings made by students will be compared against this and the 

fit statistics will show which students tended to follow the same rating patterns as 

the teacher.  When we look at the results from this analysis, it is clear that student 

raters are not behaving comparably to the teacher.  Facets Table 7.1.2, reproduced 

in Table 12, shows student ability organized by fit to the model, and all students 

show some level of misfit.  This shows that the ratings by students do not follow 

the same pattern as the ratings by the teacher.

Facets Table 7.2.2, reproduced in Table 13, shows the rater measurement report 

arranged by fit-to-the-model and this allows us to identify which student raters are 

most distorted compared to the teacher.  We can see there are four badly misfitting 

raters with mean-square fit statistics greater than 1.50; R14, R16, R18, and R12.  

These four raters seem to be causing most of the misfit, so we need to investigate 

what happened.

Table 13 Facets Table 7.2.2 Raters Measurement Report Anchored Against Teacher Ratings
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At the very bottom of the output file, we find Facets Table 4.1, reproduced in 

Table 14, which shows the most unexpected responses.  This table is generated by 

comparing the observed score with the statistically expected score.  The differ-

ence between these is called the score residual.  The score residuals are then 

standardized and Facets reports standardized residuals with absolute values 

greater than 3.0, which roughly corresponds to statistical significance of p < .01.  

Looking at Table 14, it is obvious that raters R12, R14, R16, and R18 are causing 

most of the misfit problems and that Item 3 “Eyes” is the most problematic item 

for these raters.  This very fine grained diagnostic information about how stu-

dents, items, and raters interact shows us where problems are arising and lets us 

identify individual students, raters, and items for remedial attention.

Summary and Conclusions

This paper introduced Rasch analysis through a practical process of working 

through two examples.  The first example was based on a type of test typically 

given in educational settings.  This was a dichotomously scored, that is, correct or 

incorrect answers to multiple choice items.  The second example was a judged 

Table 14 Facets Table 4.1 Most Misfitting Responses
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performance test typically given when raters use a scoring rubric that is also 

common in educational settings.  The examples were worked through with two 

different software programs Winsteps and Facets.  Practical guidelines and rules-of-

thumb were provided so that researchers doing their own analysis with their own 

data would be able to follow the steps and be able to evaluate their own 

measures.
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